Need help understanding the binomial series

  • Thread starter Thread starter stfz
  • Start date Start date
  • Tags Tags
    Binomial Series
AI Thread Summary
The discussion centers on understanding the binomial series, particularly in expanding the expression (8 + 3x)^(2/3) and determining the valid range for x. The user successfully derives the first three terms of the expansion as 4 + x - (x^2/16) but struggles with identifying the range of x for which this expansion holds. The correct range is found to be -8/3 < x < 8/3, which is clarified by rewriting the expression as 8^(2/3)(1 + (3/8)x)^(2/3). It is noted that the restrictions on x apply only when n is not a positive integer, while for positive integers, the expansion is valid for all x.
stfz
Messages
35
Reaction score
0

Homework Statement


My math textbook is currently on the Binomial Series now, after completing the Binomial Theorem (no problems with that one). I believe most of my trouble comes from the book's rather glancing explanation of it, only giving examples of the form ##(1 +/- kx)##. Now have encountered this question:

Q
Obtain the first three terms, in ascending powers of x, of the expansion of ##(8+3x)^\frac{2}{3}##, stating the set of values for which this expansion is valid.


Homework Equations



The binomial series is defined as :

##(1+x)^n = 1 + nx + \frac{n(n+1)}{1*2}x^2 + \frac{n(n+1)(n-2)}{1*2*3}x^3 + ... ##, provided that |x| < 1.

Expansion of ##(1+kx)^n## is valid for ##\frac{-1}{k} < x < \frac{1}{k}##

The Attempt at a Solution



I am able to find the expansion by following the binomial series definition, but multiplying everything by ##8^n##, where n is 2/3, -1/3, -4/3, and so on.

##(8+3x)^\frac{2}{3} = 8^\frac{2}{3} + (8^\frac{-1}{3})(\frac{2}{3})(3x) + (8^\frac{-4}{3})\frac{(\frac{2}{3})(\frac{-1}{3})}{2}(3x^2)##

Which is simplified to :

## 4 + x - \frac{x^2}{16} ## This is correct, according to the textbook answers.

However, I cannot find the range of x for which it is valid. The textbook answer is :
##\frac{-8}{3} < x < \frac{8}{3}##.

Why is that so? Could I have an explanation?
 
Physics news on Phys.org
If you pull the 8 out of the expression (8 + 3x) = 8*(1 + (3/8)x ) does that help?
 
stfz said:

Homework Statement


My math textbook is currently on the Binomial Series now, after completing the Binomial Theorem (no problems with that one). I believe most of my trouble comes from the book's rather glancing explanation of it, only giving examples of the form ##(1 +/- kx)##. Now have encountered this question:

Q
Obtain the first three terms, in ascending powers of x, of the expansion of ##(8+3x)^\frac{2}{3}##, stating the set of values for which this expansion is valid.


Homework Equations



The binomial series is defined as :

##(1+x)^n = 1 + nx + \frac{n(n+1)}{1*2}x^2 + \frac{n(n+1)(n-2)}{1*2*3}x^3 + ... ##, provided that |x| < 1.

Expansion of ##(1+kx)^n## is valid for ##\frac{-1}{k} < x < \frac{1}{k}##

The Attempt at a Solution



I am able to find the expansion by following the binomial series definition, but multiplying everything by ##8^n##, where n is 2/3, -1/3, -4/3, and so on.

##(8+3x)^\frac{2}{3} = 8^\frac{2}{3} + (8^\frac{-1}{3})(\frac{2}{3})(3x) + (8^\frac{-4}{3})\frac{(\frac{2}{3})(\frac{-1}{3})}{2}(3x^2)##

Which is simplified to :

## 4 + x - \frac{x^2}{16} ## This is correct, according to the textbook answers.

However, I cannot find the range of x for which it is valid. The textbook answer is :
##\frac{-8}{3} < x < \frac{8}{3}##.

Why is that so? Could I have an explanation?

If you write (8+3x)^n = 8^n \left(1 + \frac{3}{8}x \right)^n the reason should become clear.

Also: I hope you realize that the restrictions on ##x## apply only if ##n## is not a positive integer. When ##n## is a positive integer (n = 1 or 2 or 3 or ... ) the expansion is valid for all values of ##x##.
 
D'oh. Thanks guys :P
 
Since ##px^9+q## is the factor, then ##x^9=\frac{-q}{p}## will be one of the roots. Let ##f(x)=27x^{18}+bx^9+70##, then: $$27\left(\frac{-q}{p}\right)^2+b\left(\frac{-q}{p}\right)+70=0$$ $$b=27 \frac{q}{p}+70 \frac{p}{q}$$ $$b=\frac{27q^2+70p^2}{pq}$$ From this expression, it looks like there is no greatest value of ##b## because increasing the value of ##p## and ##q## will also increase the value of ##b##. How to find the greatest value of ##b##? Thanks
Back
Top