twoflower
- 363
- 0
Hi,
could you help me a bit with this limit?
<br /> \lim_{n \rightarrow \infty} \sqrt[n]{n!}<br />
Sure it should be more than
<br /> \lim_{n \rightarrow \infty} \sqrt[n]{n}<br />
But, when I write it as
<br /> <br /> \lim_{n \rightarrow \infty} \sqrt[n]{n!} = \lim_{n \rightarrow \infty} \sqrt[n]{n} . \lim_{n \rightarrow \infty} \sqrt[n]{n-1} . \lim_{n \rightarrow \infty} \sqrt[n]{n-2} ... \lim_{n \rightarrow \infty} \sqrt[n]{1}<br />
each term goes to 1, so I thought the limit could be 1, but that would be strange...
Thank you.
could you help me a bit with this limit?
<br /> \lim_{n \rightarrow \infty} \sqrt[n]{n!}<br />
Sure it should be more than
<br /> \lim_{n \rightarrow \infty} \sqrt[n]{n}<br />
But, when I write it as
<br /> <br /> \lim_{n \rightarrow \infty} \sqrt[n]{n!} = \lim_{n \rightarrow \infty} \sqrt[n]{n} . \lim_{n \rightarrow \infty} \sqrt[n]{n-1} . \lim_{n \rightarrow \infty} \sqrt[n]{n-2} ... \lim_{n \rightarrow \infty} \sqrt[n]{1}<br />
each term goes to 1, so I thought the limit could be 1, but that would be strange...
Thank you.