Need to calculate Christoffel connection from a given metrics

chinared
Messages
6
Reaction score
0
Hi all,
I am trying to find the Christoffel connections of this metric:

ds2= -(1+2∅)dt2 +(1-2∅)[dx2+dy2+dz2]
where ∅ is a general function of x,y,z,t.

I tried to solve this through the least action principle, but some of my results(t-related terms) were different from the answer with a minus sign. So, I guess it's a problem about the part of t of the action.

I regarded this part as -1/2(1+2∅)\dot{t}2, should I remove the minus sign to get the correct answer?

\dot{t}: the derivative of t regard to the affine parameter λ

Thanks for your help!
 
Last edited:
Physics news on Phys.org
That's pretty straight forward isn't it? The Christoffel symbols (of the first kind) are given by
[ij, k]= \frac{1}{2}\left(\frac{\partial g_{ij}}{\partial x^k}+ \frac{\partial g_{ik}}{\partial x^j}- \frac{\partial g_{jk}}{\partial x^i}\right)

Here, if we take x^1= x, x^2= y, x^3= z, and x^4= t, then g_{11}= g_{22}= g_{33}= 1- 2\phi, g_44= -(1+ 2\phi). Of course, the result will depend upon the partial derivatives of \phi. If \phi can be any function of the variables, then the Christoffel symbols can be just about anything!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...

Similar threads

Back
Top