Negated Conjunction in Predicate Logic: P ⇔ (∀x) (x ∧ ¬y)

  • Thread starter Thread starter twoflower
  • Start date Start date
twoflower
Messages
363
Reaction score
0

Homework Statement



p \leftrightarrow \left( \forall x \right)\left( x \wedge \neg y \right)

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
The words next to 1. really aren't just there for decoration.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top