pyfgcr
- 22
- 0
The Nested interval theorem: If An = [an, bn] is a sequence of closed intervals such that An+1 \subseteq An for all n \in N, then _{n \in n}\bigcapA = ∅.
I think of the case where a1=a2=...=an and b1=b2=...=bn for all n, hence every set A(n+1) will be the "subset" of A(n) and the intersection is the original closed interval. So I think the theorem in my textbook have some problem. Any correction for this ?
I think of the case where a1=a2=...=an and b1=b2=...=bn for all n, hence every set A(n+1) will be the "subset" of A(n) and the intersection is the original closed interval. So I think the theorem in my textbook have some problem. Any correction for this ?