Neutron, proton collision problem

AI Thread Summary
The discussion revolves around a physics problem related to neutron and proton collisions from an Edexcel exam. It details the process of calculating the maximum velocity of nitrogen atoms after being struck by neutrons, as well as the implications of elastic collisions on kinetic energy conservation. Participants express confusion over certain calculations and the derivation of equations, particularly in part (c), where they seek clarity on how to eliminate variables to arrive at the required formula. Additionally, there is a correction regarding the maximum velocity of hydrogen atoms, which is crucial for determining the relative mass of the neutron. The conversation highlights the complexities of momentum and energy conservation in nuclear physics experiments.
ofeyrpf
Messages
30
Reaction score
0
The following problem appeared on the A2 Edexcel Physics unit 4 exam paper January 2012 question 18. The solution, as given by the exam board, is attached.

Question:
18. James Chadwick is credited with discovering the neutron in 1932.

Beryllium was bombarded with alpha particles, knocking neutrons out of the beryllium atoms. Chadwick placed various targets between the beryllium and a detector. Hydrogen and nitrogen atoms were knocked out of the targets by the neutrons and the kinetic energies of these atoms were measured by the detector.

(a) The maximum energy of a nitrogen atom wa found to be 1.2 MeV.

Show that the maximum velocity of the atom is about 4 x 106 m/s.

mass of nitrogen atom = 14u, where u = 1.66 x 10-27 kg


Solution:
The set up as I understand it is,
alpha --> Be --> neutron --> target --> Ni or H --> detector

v = sqrt(2(1.2x10-6x1.6x10-19)/(14x1.66x10-19)) = 4.06x10-6 m/s No problems here.

Question
(b)The mass of a neutron is Nu (where N is the relative mass of the neutron) and its initial velocity is x. the nitrogen atom, mass 14u, is initially stationary and is then knocked out of the target with a velocity, y, by a collision with a neutron.

(i) Show that the velocity, z, of the neutron after the collision can be written as

z = (Nx - 14y)/N​

Solution:
momentum before = momentum after

Nux = 14uy - Nuz

rearranging gives,

z = (Nx - 14y)/N No problems here.

Question
(ii)The collision between this neutron and the nitrogen atom is elastic. What is meant by an elastic collision?

Solution
In an elastic collision the kinetic energy is conserved. No problems here.

Question
(iii) Explain why the kinetic energy Ek of the nitrogen atom is given by

Ek = (Nu(x2 - z2)/(2)​


Solution:
Using conservation of kinetic energy,

EK(n) = Ek(Ni) + Ek(n)

(1/2)Nux2 = (1/2)14Nuy2 = (1/2)Nuz2

y2 = (x2 - y2)/(14)

Ek(Ni) = (1/2)14Nuy2

= (1/2)(14Nu(x2 - z2)/14)

= (Nu(x2 - z2)/(2)

For this calculation to work, the mass of the Ni has to be 14Nu but in the question it is given as 14u. That is the first thing I don't understand.

Question
(c) The two equations in (b) can be combined and z can be eliminated to give

y = (2Nx)/(N + 14)​

Solution
The question does not ask how this is done but I'd like to know and can't figure it out. I tried substituting

z = (Nx - 14y)/(N) into Ek = (Nu(x2 - z2))/(2)

and this gives,

(2Ek)/(Nu) = x2 - ((Nx - 14y)/(N))2

But this has an Ek in it, so I don't see how to get to the required y = (2nx)/(N + 14) This is the second problem I have, not understanding where this equation comes from.

Question
(i) The maximum velocity of hydrogen atoms knocked out by neutrons in the same experiment was 30 x 107 m/s. The mass of a hydrogen atom is 1u.

Show that the relative mass N of the neutron is 1.


Solution
There is an error in the question here. Instead of 30 x 107 m/s it should 3.0 x 107 m/s.

The equation given in the question applies to Nitrogen and can be rearranged to give

2Nx = yNi(N + 14) = 4.1 x 106Ni(N + 14)

yNi = 4.1 x 106 m/s. This is obtained from part (a).

For hydrogen then

2nx = yH(N + 1) = 3.0 x 107(N+1)

These two equation can be combined giving,

4.1 x 106Ni(N + 14) = 3.0 x 107(N+1)

from which N can be solved

N = (3 x 107-14 x 4.1 x 106)/(4.1 x 106 - 3 x 107)
= 1.05 which is approximately 1

Question
(ii) This equation can not be applied to all collisions in this experiment. Suggest why.

Solution
As the atoms approach the speed of light their mass does not remain constant, it increases.
 

Attachments

  • A2PhysicsEdexceljanuary2012unit4Question18Solution.JPG
    A2PhysicsEdexceljanuary2012unit4Question18Solution.JPG
    42.3 KB · Views: 544
Last edited:
Physics news on Phys.org
ofeyrpf said:
(1/2)Nux2 = (1/2)14Nuy2 = (1/2)Nuz2
Shouldn't that read:
(1/2)Nux2 = (1/2)14uy2 + (1/2)Nuz2
?
 
Neutron, Ni, H, collision problem

Hi haruspex,

Thanks for your reply. Looking back on this post I can't believe how many typos I've made.

Yes you are correct it should read...

18. (b) (iii)

EK(n) = Ek(Ni) + Ek(n)

(1/2)Nux2 = (1/2)14uy2 + (1/2)Nuz2

14uy2 = Nu(x2 - z2)

y2 = N(x2 - z2)/14

Ek(Ni) = (1/2)14uy2

= (1/2)(14uN(x2 - z2)/14)

= Nu(x2 - z2)/(2)

So that is correct then, thanks.

Now if I could just figure out where they get the equation in part (c), I'd be happy.
 
Last edited:
For c, you have two equations:
Nx2=14y2+Nz2; Nz = Nx - 14y
Just eliminate z between them.
 
$$
Nx^2=14y^2+Nz^2\\
\mbox{and}\\
Nz=Nx-14y\\
\mbox{so,}\\
z^2=\frac{(Nx-14y)(Nx-14y)}{N^2}\\
=\frac{N^2x^2-28yNx+196y^2}{N^2}\\
\mbox{substituting this into the first equation gives,}\\
Nx^2=14y^2+N\left(\frac{N^2x^2-28yNx+196y^2}{N^2}\right)\\
0=Ny^2-2yNx+14y^2\\
2Nx=y(N+14)\\
y=\frac{2Nx}{n+14}
$$
Thanks for your help,

Shane
 
Last edited:
blah
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top