A New Adler book on GR: Why do these coefficients go to zero?

peasg
Messages
2
Reaction score
4
1722552254555.png

This is page 73 of the book. As you can see, the mixed derivatives with the affine connections vanish in the second term. Why does that happen? This is used to prove that the connections are not a tensor, and i figured you could also reason it out even without making those terms vanish.

OBS: The derivatives are avaliated at P, for the reason that this is obtained via a taylor series of the transformation coefficients.
 
  • Like
Likes PhDeezNutz and jbergman
Physics news on Phys.org
peasg said:
View attachment 349323
This is page 73 of the book. As you can see, the mixed derivatives with the affine connections vanish in the second term. Why does that happen?
The terms ##\left( \dfrac{\partial^2 \bar x^j}{\partial x^l \partial x^i } \right)_P \Gamma^i_{pq} V^q dx^l dx^p## have been dropped because they contain products ##dx^l dx^p##. Therefore, these terms are second-order in the infinitesimal coordinate displacements. Only terms up to first order need to be kept.
 
  • Like
Likes jbergman, PhDeezNutz, Nugatory and 1 other person
TSny said:
The terms ##\left( \dfrac{\partial^2 \bar x^j}{\partial x^l \partial x^i } \right)_P \Gamma^i_{pq} V^q dx^l dx^p## have been dropped because they contain products ##dx^l dx^p##. Therefore, these terms are second-order in the infinitesimal coordinate displacements. Only terms up to first order need to be kept.
Oh, that makes perfect sense. Thank you for your time!
 
  • Like
Likes PhDeezNutz and TSny
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top