Hi all, I've been following the "b->s ll" transition measurements closely these past few years.
The rare decay B->K*mumu, allows to probe these transitions in an exclusive way (you have a specific kaon in the final state). The problem with exclusive decays is that theoretically you rely on having knowledge about how the quarks (the b, s and the spectator quarks) are really in hadronic states.
However, it is not really clear if the different theoretical approaches are really the right approach. For example, a general approach is QCD factorisation, and maybe there are corrections which cannot be factorised which are large. A scenario where this might be true is near the charm resonance. Unfortunately, the interpretation of the angular analysis as evidence for new physics has exactly the same type of signal as an underestimated non factorisable correction near the charm resonances. This is where the data deviates from the "standard model" is largest.
In view of this, I take the approach that believing the angular analysis is not a safe observable to look for new physics (particularly near the charm resonances, this is less so true at extreme values of dilepton mass).
I would say it's necessary to use different observables (like the muon vs electron final state ratios) and wait for measurements of inclusive observables (b -> s ll, where you look at all final states with a strange quark). These are theoretically clean.
If new physics really is there, it will show up for these observables. Like always, "wait for more data and more measurements"