NEW Proof that parity operator is hermitean

Sunnyocean
Messages
72
Reaction score
6
If the parity operator ##\hat{P}## is hermitian, then:

##\langle \phi | \hat{P} | \psi \rangle = (\langle \psi | \hat{P} | \phi \rangle)^*##

Let us see if the above equation is true.

The left hand side of the above equation is:

## \langle \phi | \hat{P} | \psi \rangle = \int_{-\infty}^{\infty} \phi (x)^* \hat{P} \psi (x)\,dx ##

The right hand side of the above equation is:

## (\langle \psi | \hat{P} | \phi \rangle)^* = (\int_{-\infty}^{\infty} \psi (x)^* \hat{P} \phi (x)\,dx)^* = (\int_{-\infty}^{\infty} \psi (x)^* \phi (-x)\,dx)^* = \int_{-\infty}^{\infty} \phi (-x)^* \psi (x)\,dx ##

Now, changing the variable of integration from x to -t, we obtain:

## \int_{\infty}^{-\infty} \phi (t)^* \psi (-t)\,dt = \int_{\infty}^{-\infty} \phi (t)^* \hat{P} \psi (t)\,dt = - \int_{-\infty}^{\infty} \phi (t)^* \hat{P} \psi (t)\,dt = - \langle \phi | \hat{P} | \psi \rangle ##

(The minus in front of the integral appears when we switch the limits of integration)

So it would appear that P (the parity operator) is ANTI Hermitian (i.e. it is equal to the negative of its Hermitian conjugate), not Hermitian.

The “best trick” I’ve seen so far is that those who “prove” that the parity operator is Hermitian simply ignore the limits of integration. In other words, they do the calculations above for the *indefinite* integral. In this case, of course, you don’t get the minus from switching the sign of the integral above, so it appears that the parity operator is indeed Hermitian.

But it is very odd, to say the least, that an operator is hermitian when used with indefinite integrals and anti hermitian when used with definite integrals. After all, it is the same operator.

Can anyone see any mistake in my calculations above? If yes, what is it?

If what I wrote above is wrong, than can anyone show me the proof that the parity operator is hermitian?

*Please note: I am aware that this question has been asked before on Physics Forums and I *did* read the answers, however I did not find them to be conclusive. So please don’t jut copy past answers.
 
  • Like
Likes 1 person
Physics news on Phys.org
You forgot to use ##\mathrm d x = - \mathrm d t##, which fixes the minus sign.
 
  • Like
Likes 2 people
This is me replying to myself, but I know where the mistake is:

There is *one more* minus which appears when switching the variable from x to -t. The minus is from dx which is equal to -dt. Then the minus from -dt and the minus from switching the limits of the integral cancel each other out, so the parity operator is indeed Hermitian.
 
Thank you rubi, you are right :)
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top