- #1

- 76

- 0

My professor had asked that I solve the follwing problem using Newton's Method and the Trapezoidal Rule:

"A company modeled the demand curve for its product (in dollars) by the equation

p = (800000e^(- x / 5000)) / (x + 20000).

Use Newton's Method to estimate the sales level (x I'm pretty sure) when the selling price is $16. Then find the approximate consumer surplus for this level."

I'm currently stuck on how Newton's Method is meant to find x when p = 16.

The derivative of p is:

- (160e^(- x / 5000) * (x + 25000)) / (x + 20000) ^ 2

"A company modeled the demand curve for its product (in dollars) by the equation

p = (800000e^(- x / 5000)) / (x + 20000).

Use Newton's Method to estimate the sales level (x I'm pretty sure) when the selling price is $16. Then find the approximate consumer surplus for this level."

I'm currently stuck on how Newton's Method is meant to find x when p = 16.

The derivative of p is:

- (160e^(- x / 5000) * (x + 25000)) / (x + 20000) ^ 2

Last edited: