Newton's Second Law of Motion acceleration problem

AI Thread Summary
An object with a mass of 10.0 kg is sliding upward on a vertical wall under the influence of a 60 N force at a 60-degree angle. The normal force exerted by the wall is calculated to be 30 N using the equation for the y-direction. The discussion also touches on a separate problem involving a 2000 kg plane accelerated to 320 km/h in 2 seconds, where the net force is determined to be approximately 88,880 N. The complexities of solving problems involving angles are highlighted, indicating a challenge in visualizing the forces at play. Overall, the discussion revolves around applying Newton's laws to solve for forces and acceleration in different scenarios.
XxMuDvAyNexX
Messages
21
Reaction score
0
An object (mass 10.0 kg) slides upward on a slippery vertical wall. A force F of 60 N acts at an angle of 60 degrees (the force is 60 degrees South of the x+ axis, it's shown in a picture) Determine the normal force exerted on the object by the wall. Next, determine the object's acceleration.


F=m*a
F=m*g*sin(angle)
a=g*sin(angle)


Well I know that the equation for the y-dir would be 60cos60 which gives you 30 N. That is the normal force exerted by the wall. I can't visualize/understand this so if someone could explain this a bit better to me that would be great! I'm not sure of the other equations to use in this one.
 
Physics news on Phys.org
I think I figured it out...First off...
M=2000 KG
Vi=0
Vo=320 km/hr = 88.88 m/sec
T=2.0 sec

Ok, I then used the equation D=1/2(Vo+Vi)T which turned out to be 88.88 M. So D=88.88 M. Then I used the equation A=V/T. That turned out to be 44.44 m/sec^2. Finally, I used Fnet=ma. This turned out to be 88,880. The answer in the back was 8.9*10^4 which is 89,000. Do I do this problem correct?
 
wait...Ah I'm doing another problem...sorry! See I can figure out the problems that don't involve angles...those angles are so complicated! Ah back to trying to solve the first one... the one I solved was..."A jet catapult on an aircraft carrier accelerates a 2000 kg plane uniformly from rest to a launch speed of 320 km/h in 2.0 sec. What is the magnitude of the net force on the plane?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top