Saitama
- 4,244
- 93
Homework Statement
Let x, y, z be positive real numbers such that ##x+y+z=1##. Determine the minimum value of
\frac{1}{x}+\frac{4}{y}+\frac{9}{z}
Homework Equations
Cauchy-Schwarz inequality maybe?
The Attempt at a Solution
Applying the Cauchy Schwarz inequality,
\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\leq (1^2+4^2+9^2)\left( \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)
I don't see how can I solve this.
\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}
##(xy+yz+zx)^2=x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)## and ##x+y+z=1##
\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{(xy+yz+zx)^2-2xyz}{x^2y^2z^2}
I don't think the above simplification is useful here.
Any help is appreciated. Thanks!