MHB Noetherian Rings: Does R Need to Be Finitely Generated? - Peter

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Dummit and Foote in Chapter 9 - Polynomial Rings define Noetherian rings as follows:

Definition. A commutative ring R with 1 is called Noetherian if every ideal of R is finitely generated.

Question: Does this mean that R itself must be finitely generated since R is an ideal of R?

This question is important in the context of fields since D&F go on to say that every field is Noetherian. In the case of fields the only ideals are the trivial ideal {0} and the field itself. But this would mean every field is finitely generated which does not seem to be corect.

Can anyone clarify these issues for me?

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
Peter said:
Question: Does this mean that R itself must be finitely generated since R is an ideal of R?

Take into account that for every commutative and unitary ring $R$ (noetherian or not), we have $R=R\cdot 1=(1)$.

But this would mean every field is finitely generated which does not seem to be corect.

Why? In such a case, $R$ is an $R$-vector space and a basis is $B=\{1\}$.
 

Similar threads

Back
Top