MHB Noetherian Rings: Does R Need to Be Finitely Generated? - Peter

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Rings
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Dummit and Foote in Chapter 9 - Polynomial Rings define Noetherian rings as follows:

Definition. A commutative ring R with 1 is called Noetherian if every ideal of R is finitely generated.

Question: Does this mean that R itself must be finitely generated since R is an ideal of R?

This question is important in the context of fields since D&F go on to say that every field is Noetherian. In the case of fields the only ideals are the trivial ideal {0} and the field itself. But this would mean every field is finitely generated which does not seem to be corect.

Can anyone clarify these issues for me?

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
Peter said:
Question: Does this mean that R itself must be finitely generated since R is an ideal of R?

Take into account that for every commutative and unitary ring $R$ (noetherian or not), we have $R=R\cdot 1=(1)$.

But this would mean every field is finitely generated which does not seem to be corect.

Why? In such a case, $R$ is an $R$-vector space and a basis is $B=\{1\}$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...

Similar threads

Back
Top