Non-independent two consecutive draws from two urns

  • Thread starter Thread starter hwangii
  • Start date Start date
hwangii
Messages
3
Reaction score
0
Suppose there are two urns: in urn A, there are r red balls and w white balls. In urn B, there are b black balls.

Suppose we do the following experiment: draw k balls from urn A. Among those k balls, put only the red balls in urn B, and draw n balls from urn B. Then the number of red balls from the second draw is a random variable.

Call the random variable $\tilde{y}$. Then
\begin{align*}
Pr(\tilde{y}=y)=\sum\limits_{x=\max\{y,k-w\}}^{\min\{r,k\}}\frac{{r\choose x}{w\choose k-x}}{{r+w \choose k}}\frac{{x\choose y}{b\choose l-y}}{{x+b\choose l}}
\end{align*}

Does anyone know what the mean and the variance of this random variable are? If you do not know the exact form, what about the asymptotic mean and variance when r, w and b go to infinty with the ratio amongst them constant.

Thanks a lot!
 
Physics news on Phys.org
For r,w,b -> infinity with constant ratio, with constant n, the probability goes to 0 as we have many black balls and nearly no red balls in the second step.

For r,w -> infinity with constant n,b, the first drawing becomes a binomial distribution as function of k.

In general: Expand your (n choose k) as factorials, simplify, approximate them with the Stirling formula, simplify, and see what you get.

For r,w,b,n -> infinity, gaussian distributions are good.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top