Nonhomogeneous linear differential equation

HACR
Messages
35
Reaction score
0

Homework Statement


solve for y(x).

y"'-6y"+11y'-6=e^{4x}



Homework Equations



Wronskian determinant. Method of variations.

The Attempt at a Solution

Supposing that [u', v', w'] are the solutions, wronskian det=W is 10e^{6x}
By use of x_k=\frac{det(M_{k})}{det(x)}, I got u'=\frac{1}{4}e^{8x},v'=\frac{-1}{9}e^{9x}, w'=\frac{-1}{7}e^{7x}. Integration gives y=\frac{1}{10}e^{2x}-\frac{1}{30}e^{3x}-\frac{e^{x}}{10}.
 
Last edited:
Physics news on Phys.org
The answer has four whereas i came up with only 3 since the roots are 1,2, and 3 respectively. I think W=2e^{6x}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top