kape
- 25
- 0
Nonhomogenous LODE (Higher Order) - Method of Variation of Parameters
x^3y''' + x^2y'' - 2xy' + 2y = x^3log(x)
y(1) = \frac{10}{32}
y'(1) = -\frac{24}{32}
y''(1) = -\frac{11}{16}
I know that \inline y = y_h + y_p and that I probably should use the method of variation of parameters, so:
----------------
y_h
Substituting \inline m^n for y and dividing by \inline x^m I got:
m(m-1)(m-2) + m(m-1) - 2m + 2 = 0
(m-1)[m^2-2m+m-2] = 0
(m-1)(m-2)(m+1) = 0
m = \pm1, 2
y_h = ax + bx^{-1} + cx^2
----------------
y_p
So, taking \inline y_1 = x, y_2 = \frac{1}{x}, y_3 = x^2
W = \begin{array}{|ccc|} x & \frac{1}{x} & x^2 \\ 1 & -\frac{1}{x^2} & 2x \\ 0 & \frac{2}{x^3} & 2 \end{array}
W = -\frac{6}{x}
W_1 = \begin{array}{|ccc|} 0 & \frac{1}{x} & x^2 \\ 0 & -\frac{1}{x^2} & 2x \\ 1 & \frac{2}{x^3} & 2 \end{array}
W_1 = 3
W_2 = \begin{array}{|ccc|} x & 0 & x^2 \\ 1 & 0 & 2x \\ 0 & 1 & 2 \end{array}
W_2 = -x^2
W_3 = \begin{array}{|ccc|} x & \frac{1}{x} & 0 \\ 1 & -\frac{1}{x^2} & 0 \\ 0 & \frac{2}{x^3} & 1 \end{array}
W_3 = -\frac{2}{x}
Therefore:
y_p = x\int -\frac{x}{2} x^3 \lnx dx + \frac{1}{x}\int \frac{x^3}{6} x^3 \lnx dx + x^2\int -\frac{x^3}{3} \lnx dx
Which, er, is...
y_p = x(-\frac{1}{10}x^5logx + \frac{1}{50}x^5) + \frac{1}{x}(\frac{1}{42}x^7logx - \frac{1}{294}x^7) + x^2(\frac{1}{12}x^4logx <br /> <br /> - \frac{1}{48}x^4)
Making it..
y_p = -\frac{1}{10}x^6logx + \frac{1}{50}x^6 + \frac{1}{42}x^6logx - \frac{1}{294}x^6 + \frac{1}{12}x^6logx - \frac{1}{48}x^6 <br /> <br />
So..
y_p = -\frac{1}{140}x^6logx - \frac{83}{19600}x^6
--------------------------
y = y_h + y_p
Putting the two together..
y = ax + bx^{-1} + cx^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6
y' = a - bx^{-2} + 2cx - \frac{3}{70}x^5logx + x^5 - \frac{179}{9800}x^5
y'' = 2bx^{-3} + 2c - \frac{3}{14}x^4logx x^4 + 5x^4 - \frac{19}{392}x^4
Putting in the initial values at y(1)..
A = y(1) = a + b + c - \frac{83}{19600} = \frac{10}{32}
B = y'(1) = a - b + 2c - \frac{179}{9800} = -\frac{24}{32}
C = y''(1) = 2b + 2c - \frac{19}{392} = -\frac{11}{16}
And solving for a, b, c...
A = y(1) = a + b + c = \frac{388}{1225}
B = y'(1) = a - b + 2c = -\frac{7171}{9800}
C = y''(1) = 2b + 2c = -\frac{501}{784}
A - B = D
2b - c = 1\frac{387}{9800}
C - D
3c = -\frac{501}{784} - 1\frac{387}{9800}
c = -\frac{7849}{58800}
And it is starting to look quite silly.. but carrying on to find b, a and putting them into the original equation gets:
y = -\frac{109}{39200}x + \frac{53273}{117600}x^{-1} - \frac{7849}{58800}x^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6
Which is frankly, quite ridiculous. And unsurprisingly, it turns out to be wrong. So.
-----------
Question 1:
What went wrong?!
-----------
Question 2:
I am having a lot of trouble finding roots (factorizing).. right now I basically do it by trial and error and for me it takes an
inordinate amount of time.. Is there a way to do this quickly?
x^3y''' + x^2y'' - 2xy' + 2y = x^3log(x)
y(1) = \frac{10}{32}
y'(1) = -\frac{24}{32}
y''(1) = -\frac{11}{16}
I know that \inline y = y_h + y_p and that I probably should use the method of variation of parameters, so:
----------------
y_h
Substituting \inline m^n for y and dividing by \inline x^m I got:
m(m-1)(m-2) + m(m-1) - 2m + 2 = 0
(m-1)[m^2-2m+m-2] = 0
(m-1)(m-2)(m+1) = 0
m = \pm1, 2
y_h = ax + bx^{-1} + cx^2
----------------
y_p
So, taking \inline y_1 = x, y_2 = \frac{1}{x}, y_3 = x^2
W = \begin{array}{|ccc|} x & \frac{1}{x} & x^2 \\ 1 & -\frac{1}{x^2} & 2x \\ 0 & \frac{2}{x^3} & 2 \end{array}
W = -\frac{6}{x}
W_1 = \begin{array}{|ccc|} 0 & \frac{1}{x} & x^2 \\ 0 & -\frac{1}{x^2} & 2x \\ 1 & \frac{2}{x^3} & 2 \end{array}
W_1 = 3
W_2 = \begin{array}{|ccc|} x & 0 & x^2 \\ 1 & 0 & 2x \\ 0 & 1 & 2 \end{array}
W_2 = -x^2
W_3 = \begin{array}{|ccc|} x & \frac{1}{x} & 0 \\ 1 & -\frac{1}{x^2} & 0 \\ 0 & \frac{2}{x^3} & 1 \end{array}
W_3 = -\frac{2}{x}
Therefore:
y_p = x\int -\frac{x}{2} x^3 \lnx dx + \frac{1}{x}\int \frac{x^3}{6} x^3 \lnx dx + x^2\int -\frac{x^3}{3} \lnx dx
Which, er, is...
y_p = x(-\frac{1}{10}x^5logx + \frac{1}{50}x^5) + \frac{1}{x}(\frac{1}{42}x^7logx - \frac{1}{294}x^7) + x^2(\frac{1}{12}x^4logx <br /> <br /> - \frac{1}{48}x^4)
Making it..
y_p = -\frac{1}{10}x^6logx + \frac{1}{50}x^6 + \frac{1}{42}x^6logx - \frac{1}{294}x^6 + \frac{1}{12}x^6logx - \frac{1}{48}x^6 <br /> <br />
So..
y_p = -\frac{1}{140}x^6logx - \frac{83}{19600}x^6
--------------------------
y = y_h + y_p
Putting the two together..
y = ax + bx^{-1} + cx^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6
y' = a - bx^{-2} + 2cx - \frac{3}{70}x^5logx + x^5 - \frac{179}{9800}x^5
y'' = 2bx^{-3} + 2c - \frac{3}{14}x^4logx x^4 + 5x^4 - \frac{19}{392}x^4
Putting in the initial values at y(1)..
A = y(1) = a + b + c - \frac{83}{19600} = \frac{10}{32}
B = y'(1) = a - b + 2c - \frac{179}{9800} = -\frac{24}{32}
C = y''(1) = 2b + 2c - \frac{19}{392} = -\frac{11}{16}
And solving for a, b, c...
A = y(1) = a + b + c = \frac{388}{1225}
B = y'(1) = a - b + 2c = -\frac{7171}{9800}
C = y''(1) = 2b + 2c = -\frac{501}{784}
A - B = D
2b - c = 1\frac{387}{9800}
C - D
3c = -\frac{501}{784} - 1\frac{387}{9800}
c = -\frac{7849}{58800}
And it is starting to look quite silly.. but carrying on to find b, a and putting them into the original equation gets:
y = -\frac{109}{39200}x + \frac{53273}{117600}x^{-1} - \frac{7849}{58800}x^2 - \frac{1}{140}x^6logx - \frac{83}{19600}x^6
Which is frankly, quite ridiculous. And unsurprisingly, it turns out to be wrong. So.
-----------
Question 1:
What went wrong?!
-----------
Question 2:
I am having a lot of trouble finding roots (factorizing).. right now I basically do it by trial and error and for me it takes an
inordinate amount of time.. Is there a way to do this quickly?
Last edited: