A Nonlocal transformations in Batalin-Vilkovisky theory

gentsagree
Messages
93
Reaction score
1
Hi,

Can anyone clarify what precisely is meant by "nonlocal transformations" in the BV formalism?

Specifically, they claim that for any gauge theory with an open algebra, it is possible to go to a different basis for the algebra whereby one achieves closure (and even one where the gauge algebra is always abelian!). They claim this is at the price that the infinitesimal transformations (the usual stuff, where the transformation of the field is proportional to the algebra generators) be nonlocal and non relativistic covariant.

I guess I'm trying to understand how related this is to my beloved local and covariant gauge theories, say non-Abelian Yang-Mills. Can anyone elaborate on the statements that "if I drop locality and covariance for Yang-Mills theory, then the theory becomes abelian?" or "if I drop locality and covariance for supergravity, then the algebra can always be closed?"
 
Could you please provide references to where you read these statements? Perhaps then it would be easier to help.
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top