saxyliz
- 6
- 0
Homework Statement
A thin glass rod is a semicircle of radius R, see the figure. A charge is nonuniformly distributed along the rod with a linear charge density given by \lambda=\lambda_{0} + sin(\theta), where \lambda_{0} is a positive constant. Point P is at the center of the semicircle.
Determine the acceleration (magnitude and direction) of an electron placed at point P, assuming R = 1.9 and \lambda_{0} = 2.0 \mu C/m.
Homework Equations
Coulomb's Law F_{e}=kq_{1}q_{2}/r^{2}
Electric Field Equation E=F_{e}/q
Newton's 2nd Law
The Attempt at a Solution
I attempted to use Newton's 2nd Law to solve this problem. I know the mass of an electron, and since gravity can be ignored, I knew that all I needed to do was to find the electric force on the electron to find the acceleration. I know the the force points straight up do to the positive charge above and the negative charge below, but I'm having trouble quanitfying the forces. I attempted to use Coulomb's Law by plugging in the charges for just one electron and proton, but I know that's not right. Please help!
(Also, let me know if the image disappears, it should work out fine though...)