(adsbygoogle = window.adsbygoogle || []).push({}); 1. At a certain time the wavefunction of a one-dimensional harmonic oscillator is

[tex]\psi[/tex](x) = 3[tex]\phi[/tex]_{0}(x) + 4[tex]\phi[/tex]_{1}(x)

where [tex]\phi[/tex]_{0}(x) and [tex]\phi[/tex]_{1}(x) are normalized energy eigenfunctions of the ground and first excited states respectively. Normalize the wavefunction and determine the probability of finding the oscillator in the ground state.

3. I'm not really sure if I'm normalizing the wavefunction correctly, I get the normalizing constant as 1/7. However, when I calculate the probability of the ground state and first state combined they don't equal one. Aren't they supposed to and have I normalized correctly?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Normalizing a Wavefunction of a harmonic oscillator

**Physics Forums | Science Articles, Homework Help, Discussion**