Notation clarification: SU(N) group integration

paralleltransport
Messages
128
Reaction score
97
Homework Statement
This is not a homework problem.
Relevant Equations
U is a matrix element of SU(N). dU is the haar measure (left invariant measure) on the SU(N) lie group.
Hello,

I would like help to clarify what det( {\delta \over \delta J}) W(J) (equation 15.79) actually means, and why it returns a number (and not a matrix). This comes from the following problem statement (Kaku, Quantum Field Theory, a Modern Introduction)
1640643097208.png


Naively, one would define det ({\delta \over \delta J}) W(J) to be the determinant of the matrix whose i, j'th element is
δWδJijδWδJij
 
Physics news on Phys.org
paralleltransport said:
I would like help to clarify what \det(\frac{\delta }{\delta J}) W(J).
The determinant of any n \times n matrix (such as u and \frac{\delta}{\delta J}) is given by \det (M) = \frac{1}{n!} \epsilon_{i_{1} \cdots i_{n}} \ \epsilon_{j_{1} \cdots j_{n}} \ M_{i_{1}j_{1}} \ \cdots \ M_{i_{n}j_{n}} . Now take M = u \in SU(n) and integrate over SU(n): since \det (u) = 1 and the measure is normalized \int_{SU(n)} d \mu (u) = 1, you get 1 = \frac{1}{n!} \epsilon_{i_{1} \cdots i_{n}} \ \epsilon_{j_{1} \cdots j_{n}} \int_{SU(n)} d \mu (u) \ u_{i_{1}j_{1}} \ \cdots \ u_{i_{n}j_{n}} , or 1 = \left( \frac{1}{n!} \epsilon_{i_{1} \ \cdots \ i_{n}} \ \epsilon_{j_{1} \ \cdots \ j_{n}} \frac{\delta}{\delta J_{i_{1}j_{1}}} \ \cdots \frac{\delta}{\delta J_{i_{n}j_{n}}} \right) W(J) \equiv \mbox{det}(\frac{\delta}{\delta J}) W(J) .
 
  • Like
Likes paralleltransport
OK that clears it up thanks!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top