Nuclear Power Plant Spent Fuel Types

AI Thread Summary
The discussion focuses on the types of spent fuel generated by various nuclear power reactors worldwide, highlighting the operational statistics of reactors in the US, France, Russia, and other countries. It explains that spent fuel is produced when the fissile material is depleted and fission products accumulate, making further operation uneconomical. There is a query regarding the potential for bomb-making from spent fuel, noting that while the plutonium content is lower than optimal, it may still be sufficient with effort. The conversation also touches on the geometric characteristics of fuel in different reactor types, which influence the spent fuel's composition and discharge burnup. Overall, the thread provides insights into the complexities of spent nuclear fuel and its implications for safety and security.
average guy
Messages
119
Reaction score
0
nuclear engineers
it does seem like it requires types of
current nuclear power plants.
so what are they and what are
the spent fuels?

Have A Nice Day!
 
Engineering news on Phys.org
Light water reactors - 359 in operation in the world, of which 104 are in the US.
http://www.iaea.org/NuclearPower/WCR/LWR/


The USA has 104 nuclear power reactors - 69 pressurized water reactors (PWRs) with combined capacity of about 67 GWe and 35 boiling water reactors (BWRs) with combined capacity of about 34 GWe.
http://www.world-nuclear.org/info/inf41.html

France has 58 nuclear reactors operated by Electricite de France (EdF), with total capacity of over 63 GWe, supplying 421 billion kWh per year of electricity (net), 78% of the total generated there in 2011.
http://www.world-nuclear.org/info/inf40.html

Russia has 33 reactors: 1 FBR, 11 RBMKs, 17 VVERs, and 4 small graphite moderated reactors.
http://www.world-nuclear.org/info/inf45.html

The Republic of Korea (S. Korea) has 4 CANDUs and 17 PWRs.
http://www.world-nuclear.org/info/inf81.html

Germany has 17 operating nuclear power reactors. Six units are boiling water reactors (BWR), 11 are pressurised water reactors (PWR). All were built by Siemens-KWU.
http://www.world-nuclear.org/info/inf43.html

The UK has a fleet of gas-cooled (CO2) reactors, 3 Magnox and 14 AGRs. There is one PWR in the UK.
http://www.world-nuclear.org/info/inf84.html

Sweden has 10 LWRs - 7 BWRs (2 BWR units were shutdown, one in 1999 and the other in 2005) and 3 PWRs
http://www.world-nuclear.org/info/inf42.html

Spain has 8 LWRs - 2 BWRs and 6 PWRs
http://www.world-nuclear.org/info/inf85.html

Switzerland has 5 LWRs - 2 BWRs and 3 PWRs.
http://www.world-nuclear.org/info/inf86.html

There are a handful of liquid metal (fast) reactors.

More general information - http://www.world-nuclear.org/info/
http://www.world-nuclear.org/info/reactors.html


Fuel is spent when the fissile inventory is depleted and fission products have accumulated to the point where is it not economical to continue operation, or the fuel has reached it's technical (licensed) limits, and the fuel is discharged.
 
Last edited by a moderator:
asto nuke
this was on computer bright and early.
you certainly had your coffee.
that is a FIRST CLASS answer.
thank you sir.
i will respond soon.

Have A Nice Day!
 
Astronuc's answer was excellent. This is my first post and I hope that I have it in the right place. I believe that this question is related, so I will ask it here. The mods can certainly move it if I have posted in the wrong place.

A friend asked me about a statement he read that bombs could be made from spent fuel from most reactors.

1) Is this because the the amount of the fissionable plutonium, while lower than optimum, is still high enough to build a bomb with sufficient effort?

2) Does anyone know of a source that links the spent fuels results to the type of reactor used?

Thanks.
 
Saurian said:
Astronuc's answer was excellent. This is my first post and I hope that I have it in the right place. I believe that this question is related, so I will ask it here. The mods can certainly move it if I have posted in the wrong place.

A friend asked me about a statement he read that bombs could be made from spent fuel from most reactors.

1) Is this because the the amount of the fissionable plutonium, while lower than optimum, is still high enough to build a bomb with sufficient effort?

2) Does anyone know of a source that links the spent fuels results to the type of reactor used?

Thanks.

(The plutonium isotopic composition of used MOX fuel at 45 GWd/tU burnup is about 37% Pu-239, 32% Pu-240, 16% Pu-241, 12% Pu-242 and 4% Pu-238.)
Ref: http://world-nuclear.org/info/inf29.html

WG-Pu has better than 90% Pu-239.

With respect to 2), the fuel geometric characteristics are general specific to a reactor design. In PWRs (including VVERs), the control element geometry is fixed, so each unit is restricted to a given geometric (lattice) design, unless the upper head and control guide structures are replaced.

BWRs have more flexibility, and we've seen an evolution from 7x7 to 8x8 to 9x9 and 10x10 lattices over the past 40 years.

CANDUs have similar flexibility and more advanced fuel element designs use more fuel rods in the same lateral envelope.

AGRs are pretty much fixed in what they use.

The discharge burnup depends on energy density, batch fraction and cycle length. Discharge burnups for LWRs are typically in the range of 45-55 GWd/tHM, with BWRs lagging PWRs. CANDUs use much lower enrichment, so their discharge burnup is much less.
 
Hello everyone, I am currently working on a burnup calculation for a fuel assembly with repeated geometric structures using MCNP6. I have defined two materials (Material 1 and Material 2) which are actually the same material but located in different positions. However, after running the calculation with the BURN card, I am encountering an issue where all burnup information(power fraction(Initial input is 1,but output file is 0), burnup, mass, etc.) for Material 2 is zero, while Material 1...
Hi everyone, I'm a complete beginner with MCNP and trying to learn how to perform burnup calculations. Right now, I'm feeling a bit lost and not sure where to start. I found the OECD-NEA Burnup Credit Calculational Criticality Benchmark (Phase I-B) and was wondering if anyone has worked through this specific benchmark using MCNP6? If so, would you be willing to share your MCNP input file for it? Seeing an actual working example would be incredibly helpful for my learning. I'd be really...
Back
Top