Number of unknowns - Coordinate Transforms

thehangedman
Messages
68
Reaction score
2
In general relativity, what are the total number of unknowns for a generic coordinate transform? Is it just 4 * 4 = 16? Is there a way to break those down into combinations of types, such as boosts, rotations, reflections (parity?), etc, or is it just left wide open from an interpretive standpoint? My feeling is the answer is in fact 16 unknown functions of space-time and that the actual interpretation can't really be broken out like we do in SR (Lorentz)...

Your help is greatly appreciated...
 
Physics news on Phys.org
It is an infinite number of unknowns. Even if you only had a 1D manifold, there are an infinite number of degrees of freedom.
 
DaleSpam said:
It is an infinite number of unknowns. Even if you only had a 1D manifold, there are an infinite number of degrees of freedom.

I made a mistake in my question. I know that functions have an unlimited number of degrees of freedom, I meant to ask how many functions are involved in a generic coordinate transform in R^4. My guess is 16, since there are two indexes in the transformation matrix, each running over 4 values, but wanted clarity since there might be symmetries that eliminate elements (though I'm guessing not).
 
I think it is only 4 unknown functions. You can always write it as:
x'_0=f_0(x_0,x_1,x_2,x_3)
x'_1=f_1(x_0,x_1,x_2,x_3)
x'_2=f_2(x_0,x_1,x_2,x_3)
x'_3=f_3(x_0,x_1,x_2,x_3)
 
May be you are talking about gμv which seems to have 16 components.But it is symmetric,which will eliminate 6 so there will be only 10 independent components.
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Back
Top