Number of unknowns - Coordinate Transforms

thehangedman
Messages
68
Reaction score
2
In general relativity, what are the total number of unknowns for a generic coordinate transform? Is it just 4 * 4 = 16? Is there a way to break those down into combinations of types, such as boosts, rotations, reflections (parity?), etc, or is it just left wide open from an interpretive standpoint? My feeling is the answer is in fact 16 unknown functions of space-time and that the actual interpretation can't really be broken out like we do in SR (Lorentz)...

Your help is greatly appreciated...
 
Physics news on Phys.org
It is an infinite number of unknowns. Even if you only had a 1D manifold, there are an infinite number of degrees of freedom.
 
DaleSpam said:
It is an infinite number of unknowns. Even if you only had a 1D manifold, there are an infinite number of degrees of freedom.

I made a mistake in my question. I know that functions have an unlimited number of degrees of freedom, I meant to ask how many functions are involved in a generic coordinate transform in R^4. My guess is 16, since there are two indexes in the transformation matrix, each running over 4 values, but wanted clarity since there might be symmetries that eliminate elements (though I'm guessing not).
 
I think it is only 4 unknown functions. You can always write it as:
x'_0=f_0(x_0,x_1,x_2,x_3)
x'_1=f_1(x_0,x_1,x_2,x_3)
x'_2=f_2(x_0,x_1,x_2,x_3)
x'_3=f_3(x_0,x_1,x_2,x_3)
 
May be you are talking about gμv which seems to have 16 components.But it is symmetric,which will eliminate 6 so there will be only 10 independent components.
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top