Number of ways in a 3D lattice

AI Thread Summary
The discussion focuses on calculating the number of paths in a 3D lattice, extending from a 2D case where the number of paths is determined by combinations. The initial calculation for 2D paths is debated, with clarification that the correct formula is C(n+m, m) for choosing upward steps. Participants explore how this concept can be generalized to higher dimensions, suggesting that the solution will involve a product of combinations. Resources such as videos on trinomial functions and path counting are shared for further understanding. The conversation emphasizes the complexity of extending these principles to multiple dimensions.
nickek
Messages
21
Reaction score
1
Hi!
If I have points A and B in a lattice in the plane, and the closest path between them is n + m steps (for example 4 steps upwards and 5 steps to the right), there are C(9,(5-4)) = 9 combinations of paths between them. I have to choose the 4 ways upwards (or the 5 ways to the right) of the 9 total (there are just 2 possibilities in the node, so when I choose 1 of them I'm done).

But if the lattice is in the 3D space, and I have 3 choices in each node, how can I solve the number of paths in this case? E.g k + m + n = 3 steps inwards, 4 steps upwards and 5 steps tho the right. And what if we have a lattice in any dimension?

Thanks!
Nick
 
Mathematics news on Phys.org
Are you sure about the 2D case? My reasoning is that, out of the n+m steps, we have to choose the m that are upwards, so the number of paths is C(n+m,m), which is more than n+m if m>1.

My approach leads to a natural extension to the formula for the number of paths in any number of dimensions. The answer will be a product of Combinations.
 
andrewkirk said:
Are you sure about the 2D case? My reasoning is that, out of the n+m steps, we have to choose the m that are upwards, so the number of paths is C(n+m,m), which is more than n+m if m>1.

My approach leads to a natural extension to the formula for the number of paths in any number of dimensions. The answer will be a product of Combinations.
Thank you. Yes, the number of paths should be C(n+m,m).

I will think more about the extension.

Tanks again!
 
nickek said:
I will think more about the extension.
Let me know how you go. I'm still working on calibrating my hints to steer a good path between too broad (a dead giveaway) and too narrow (not much help). Sometimes that challenge seems harder than solving the problem itself!
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top