[Numerical analysis] Stability and condition of Newton's method

AI Thread Summary
The discussion revolves around the concepts of stability and condition in numerical methods, particularly Newton's method. Condition is linked to how output changes with input variations, while stability relates to the behavior of errors during computation. The participants question whether the differences in accuracy between algorithms indicate that one is worse conditioned than another, especially when both aim to solve the same problem. They explore the implications of small changes in starting values leading to different roots, suggesting that this might reflect on the stability of the method rather than its condition. Ultimately, the conversation highlights the complexity of quantifying stability and condition in numerical analysis.
srn
Messages
17
Reaction score
0
I am confused by the concept of stability and condition. As I understand it, condition is defined by how much the output changes when the input changes. But why is it linked to the problem and not the algorithm? What if I have two algorithms that calculate the same thing but in a completely different manner, and the same change in input causes algorithm (a) to return more erroneous results than algorithm (b), can I not conclude (a) is worse conditioned than (b)? Or is that what stability is about? From Wikipedia: the difference between function and approximations, or "whether or not errors blow up". Is condition simply f(x) - f(x+\epsilon) and stability f_{theory}(x) - f(x)? If so I more or less understand it, but I can't apply it to Newton's method, for example.

Consider the fractal in http://mathworld.wolfram.com/NewtonsMethod.html. It is obvious that a small change in starting value can cause it to converge to a completely different root. Is the method then ill-conditioned? But condition is linked to the problem, so it would be the same for a different root solving method; but i.e. Müller's method has less trouble with changing start values. So it's dependent on algoritm and hence not condition. But then what does the fractal tell you?

Is it stability? I don't think so because there's 'nothing wrong', I mean, it's still going t oa root, it's not diverging or anything. I understand substracting two nearly equal numbers is unstable because the error "blows up", but in this case? Speaking about that, 1) how would you quantify stability when you have no theoretical values? Would you use a function built into a computerprogram and assume that it is implemented as accurately as possible and then compare with that? 2) how come you even get differences in accuracy between methods? In this case you would iteratively calculate a root until the difference between consequetive terms is lower than a tolerance. If you use the same tolerance, how can two values differ? It would mean that going from the step where error > tol to the step where it is <= tol, one method "added" more than the other.
 
Mathematics news on Phys.org
I like Newton's method. It prevents the absurdity of having a square root of number being equal in magnitude to the square without breaking a sweat. That way, I'm comfortable in having this neat equations
sqrt. 1=0.9r
and conversely
sqrt. 0.9r=1
(I noticed that square roots of fractions have a higher numerical value than their squares while square roots of whole numbers are lesser).
NB. Am not insinuating that .9r is any lesser than 1. I've seen the FAQs.
 
I presume that by "fraction" you mean "a number between 0 and 1". Mathematically, a fraction is any number of the for a/b where a and b are integers. That is, 30/5 is a fraction and 0.5 is not (unless you use the bastard phrase "decimal fraction").

Yes, if 0< x< 1 then, multiplying each part by the postive number x, 0< x^2< x while if 1< x, then x< x^2.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top