I Numerical Solution of Complex Systems in GR

epovo
Messages
114
Reaction score
21
TL;DR Summary
If we could solve the EFE's for a given stress-energy configuration, the LHS of the equation would represent the whole history of the system
Please help me confirm that I understand this correctly.
Imagine a system comprised of two black holes orbiting each other, which will eventually merge. At any point in time we describe the stress-energy tensor of the system. Assume that we could solve the EFE's for every point (t,x,y,z). This solution would contain the whole future (and past) evolution of the system, including the merge.
It is my understanding that this is not really possible, so we have to do the following: we take ##T_{\alpha\beta}(t_0)## and solve numerically for ##G_{\alpha\beta}(t_0)##. Then we compute how ##T_{\alpha\beta}## changes in a short period Δt, in which the configuration of mass and energy follow whatever geodesics are there, obtaining ##T_{\alpha\beta}(t_0+\Delta t)##. Now we do it again, giving us ##G_{\alpha\beta}(t_0+\Delta t)##
Is this how numerical methods work, in essence?
 
Physics news on Phys.org
That sounds like you're trying to describe GR as an initial value problem. You specify the stress-energy tensor and metric on a Cauchy surface, which is to say an acausal surface that spans the causal past or future of all events (so "all of space at one time"), and then solve the field equations with those boundary conditions. It's certainly possible to do that (and the ADM formalism is well-adapted to it), but it isn't the only way to do things.
 
Thank you @Ibix - where can I learn more about this topic? The description I gave is the only way I could come up with
 
Ibix said:
That sounds like you're trying to describe GR as an initial value problem. You specify the stress-energy tensor and metric on a Cauchy surface, which is to say an acausal surface that spans the causal past or future of all events (so "all of space at one time"), and then solve the field equations with those boundary conditions. It's certainly possible to do that (and the ADM formalism is well-adapted to it), but it isn't the only way to do things.
You also need the second fundamental form.
 
martinbn said:
You also need the second fundamental form.
I don't even know what that is :frown:
 
epovo said:
Thank you @Ibix - where can I learn more about this topic? The description I gave is the only way I could come up with
I read about it in Wald, and I need to revisit it, apparently.

I think the second fundamental form describes how the Cauchy surface is embedded in the spacetime, but I might be wrong about that.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top