NxN matrix multiplication; commutativity

mathman44
Messages
204
Reaction score
0

Homework Statement


Explicitly show, using numbers, that in general NxN matrix multiplication is not commutative. Show this for all N > 1.


If I make a matrix A, 2x2,

1 2
3 4

and multiply by matrix B, also 2x2

5 6
7 8

I get AB =/=BA

If I multiply a new matrix A, 3x3,

1 2 3
4 5 6
7 8 9

by a new matrix B, 3x3,

10 11 12
13 14 15
16 17 18

I get AB=/=BA

Ok... but how do I show that this holds for ALL n > 1? I have to do this explicitly using real numbers.
 
Physics news on Phys.org
There is a simple way to make a smaller matrix into a larger matrix.
 
hi mathman44! :smile:
mathman44 said:
Ok... but how do I show that this holds for ALL n > 1? I have to do this explicitly using real numbers.

try defining a matrix that's nearly all zeros, and a few 1s or -1s :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top