MHB *oblique asymptotes of radical expressions

AI Thread Summary
Oblique asymptotes can occur with radical expressions, as demonstrated by the function \(y = \sqrt{x^2 + 6x}\), which has asymptotes \(y = x + 3\) and \(y = -x - 3\). For large values of \(x\), the expression behaves asymptotically like \(x + 3\) for positive \(x\) and \(-x - 3\) for negative \(x\). The derivation involves manipulating the expression to show that the difference between the function and the asymptote approaches zero as \(x\) approaches infinity. By completing the square, the function can be transformed into a hyperbolic form, revealing its asymptotic behavior. Understanding these asymptotes expands the concept beyond traditional rational expressions.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:
 
Mathematics news on Phys.org
karush said:
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:

For large \(x\) we have the asymtotic behavior: \[\sqrt{x^2+6x} \sim \sqrt{x^2+6x+9}=\pm (x+3)\]
Note deliberate error of use of the \(\pm\) sign, a square root is by definition positive, so as \(x \to +\infty,\ \sqrt{x^2+6x} \sim x+3\), and \(x \to -\infty,\ \sqrt{x^2+6x} \sim -(x+3)\). See plot below.

View attachment 430

CB
 

Attachments

  • plot.PNG
    plot.PNG
    3.6 KB · Views: 90
Last edited:
karush said:
it seems most oblique asymptotes are mostly with rational expressions but
$\sqrt{x^2+6x}$ has the asymptote of $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression

thanks ahead:cool:

As usual, you can proceed by studying the difference $f(x)-(ax+b)$ since you've got that information. For calculus, you would then use the conjuguated expression.

For $x>0$:
$\sqrt{x^2+6x}-x-3=\frac{(\sqrt{x^2+6x}-x-3)(\sqrt{x^2+6x}+x+3)}{\sqrt{x^2+6x}+x+3}=\frac{x^2+6x-(x+3)^2}{\sqrt{x^2+6x}+x+3)}=\frac{-9}{\sqrt{x^2+6x}+x+3)}$
therefore $\lim_{x->+\infty}{f(x)-x-3}=0$
you can even deduce from above that the curve is under the asymptote ($f(x)-(ax+b) < 0 $)
 
Hello, karush!

It seems most oblique asymptotes are mostly with rational expressions,
but $y \:=\:\sqrt{x^2+6x}$ has the asymptotes $y=x+3$ and $y=-x-3$
I don't know how this is derived since it is not a rational expression.
We have: .$y \:=\:\sqrt{x^2+6x} $

Square both sides: .$y^2 \:=\:x^2+6x \quad\Rightarrow\quad x^2 + 6x - y^2 \:=\:0 $

Complete the square: .$x^2 + 6x \color{red}{+ 9} - y^2 \:=\:0 \color{red}{+9} \quad\Rightarrow\quad (x+3)^2 - y^2 \:=\:9 $

Divide by 9: .$\dfrac{(x+3)^2}{9} - \dfrac{y^2}{9} \:=\:1$The graph is the upper half of this hyperbola,

. . whose asymptotes are: $y \:=\:\pm(x+3)$
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Replies
3
Views
1K
Replies
20
Views
2K
Replies
2
Views
1K
Replies
3
Views
2K
Replies
4
Views
5K
Replies
22
Views
2K
Back
Top