Obtaining the number of factors from prime factorization

AI Thread Summary
To determine the number of distinct factors of 2520, the correct approach involves recognizing that 2520 can be expressed as 2^3 * 3^2 * 5^1 * 7^1, which has four distinct prime factors. The number of distinct factors is calculated using the formula (1+n1)(1+n2)(1+n3)... for each prime factor's exponent. For 2520, this results in (3+1)(2+1)(1+1)(1+1) = 48 distinct factors. The earlier confusion stemmed from misinterpreting the number of prime factors versus the total number of prime factor occurrences. Understanding this distinction is crucial for accurate calculations in number theory.
danne89
Messages
180
Reaction score
0
Hi! How do I determine the number of distinct factors of a number, say, 2520?
2520 = 2*2*2*3*3*5*7
So we've 8 different primes. The number of combinations of those is, according to me:
C(8,1)+C(8,2)+...+C(8,8)=155 (I think, calculated it by hand; but it isn't important)
Obviously those aren't distinct. (Pick the fist 2 and the second 2 = 4, but pick the second 2 and the third 2 also = 4.)
 
Mathematics news on Phys.org
I don't understand what you are doing. 2520= 2*2*2*3*3*5*7 has 4 distinct prime factors, not "8 different primes". And I don't see what being "prime factors" has to do with number of combinations. Are you asking "of those 8 numbers (not all distinct) how many combinations can I make"? Wouldn't that be the same as asking "of the 8 letters "aaabbcd", how many different combinations can I make?" There are only 3 different one letter combinations: "a", "b", and "c", not C(8,1)= 8.
 
Isn't the combinations of the prime factors = all factors?
I mean, i pick 2*2 (a product of the primes in the positions specified by the combination) or 12
i pick 2*2 or 23
i pick 2*3 or 24

and so on.
Do you see?
 
danne89 said:
Hi! How do I determine the number of distinct factors of a number, say, 2520?
2520 = 2*2*2*3*3*5*7
So we've 8 different primes. The number of combinations of those is, according to me:
C(8,1)+C(8,2)+...+C(8,8)=155 (I think, calculated it by hand; but it isn't important)
Obviously those aren't distinct. (Pick the fist 2 and the second 2 = 4, but pick the second 2 and the third 2 also = 4.)
This is a special case of the divisor functions studied in number theory where you sum the kth power of the divisors.
In this case the 0th power.
say your number factors as
p1^n1*p2^n2*p3^n3*...*pk^nk*...
a general factor (including improper ones) is
p1^m1*p2^m2*p3^m3*...*pk^mk*...
where pk is a prime and 0<=mk<=nk
Thus the number of such factors is
(1+n1)(1+n2)(1+n3)...(1+nk)...
In particular 1 has one factor and and p^n (p prime) has n+1
2520 has 4*3*2*2=48
see this link for more info
http://mathworld.wolfram.com/DivisorFunction.html
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...

Similar threads

Replies
3
Views
989
Replies
7
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
24
Views
3K
Replies
7
Views
2K
Back
Top