How Do You Solve the Brachistochrone Problem Using Calculus of Variations?

jofree87
Messages
37
Reaction score
0
y[1+(y')^2] = k

First solve for dx in terms of y and dy, an then use the substitution y = ksin2(θ) to obtain a parametric form of the solution. The curve turns out to be a cycloid.

My attempt:

(y')^2 = k/y-1

dy/dx = sqrt(k/y-1)

dx = dy/[sqrt(k/y-1)]

then substitute y = ksin^2(θ)

dx = dy/[sqrt(1/sin^2(θ)-1]

dx = dy/[sqrt(cos^2(θ)/sin^2(θ)]

dx = dy/cot(θ)

I don't know where to go from here, but the parametric form of y should equal k(1-cos(θ)).
Any help would be appreciated.
 
Physics news on Phys.org
shouldn't you sub in for dy in terms of dθ
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top