cheddacheeze
- 42
- 0
Homework Statement
You are given that two solutions to the homogeneous Euler-Cauchy equation
x^2 \frac{d^2}{dx^2}y(x) - 5x \frac{d}{dx} y(x) + 5y(x) = 0
y1=x, y2=x^5
y''-\frac{5}{x}y'+\frac{5}{x^2}y=-\frac{49}{x^4}
changing the equation to standard form
use variation of parameters to find a particular solution to the inhomogenous Euler-Cauchy equation
Homework Equations
Wronskian
W=4x^5
yp (y particular)
yp=uy1+vy2
u= \frac{-49}{12x^3}
The Attempt at a Solution
v' = \frac{y1r}{w}
v' = \frac{(x) (-49/x^4)}{4x^5}
v' = -\frac{49}{4x^8}
v = -\frac{49}{4} \int \frac{1}{x^8}
v = (-\frac{49}{4}) (-\frac{1}{7x^7})
v = \frac{49}{28x^7}
yp = \frac{-49}{12x^3}*x + \frac{49}{28x^7}*x^5
yp = \frac{-49}{12x^2} + \frac{49}{28x^2}
Last edited: