One-parameter group of transformations

-Alexander-
Messages
2
Reaction score
0
I'm trying to understand what a one-parameter group of transformations really is. At one lecture I was told that they are trivial lie groups. In Arnold's "Ordinary Differential Equations" they are defined as an action by the group of real numbers; a collection of transformations parametrised by the real parameter t (time), and as being the mathematical equivalent of a two-sided deterministic process. I can more or less understand all this, but still feel some confusion. For example, is there such a thing as a two-parameter group of transformations? n-parameter?
 
Physics news on Phys.org
Yes, there are multiparameter Lie groups of transformations. But they are more complex in their structure; in particular, they are isomorphic with systems of PDEs, not of ODEs as the one-parameter groups are.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top