Opposite of a complex question

  • Thread starter Thread starter nhrock3
  • Start date Start date
  • Tags Tags
    Complex
nhrock3
Messages
403
Reaction score
0
(\frac{1}{0.81e^{j0.27}})*=\frac{1}{0.81}e^{j0.27}
why we can remove the constant?
why the conjugate of a complex number is multiplication of the angle by -1
 
Physics news on Phys.org
Complex conjugation is distributive over multiplication, and a real number is not affected by it, therefore you can pull the constant out.

The angle thing comes from euler's formula:

e^{j\theta}=cos(\theta)+jsin(\theta)

So

(e^{j\theta})*=cos(\theta)-jsin(\theta)=cos(-\theta)+jsin(-\theta)=e^{-j\theta}
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top