Optical depth from radiative transfer equation

Kayla Martin
Messages
7
Reaction score
0
Homework Statement
Hi, I can't figure out how to find the optical depth for the following situation:
A supernova remnant has a brightness of I=1.5x10^{-19} Wm^{-2}Hz^{-1}sr^{-1} at frequencies around 1.6-1.7 GHz, but OH molecules in a homogenous foreground cloud produce an absorption line at 1667MHz. The observed intensity at the center of the line is 3.0x10^{-20} Wm^{-2}Hz^{-1}sr^{-1} and the width is 16kHz (corresponding to a velocity width of about 3km/s).
Assuming T_{ex}=12K throughout the cloud for this transition I need to use the radiative transfer equation to calculate the optical depth at the center of the line, tau_0.
Can someone please help me figure this out? I know we have been given all the equations for this in our lecture notes, but I am stumped at how to put it all together?
Relevant Equations
$$\frac{dI}{dS} = - \alpha I + j$$ where $$\alpha$$ is absorption coefficient...
$$\frac{dI}{\tau} = - I + S$$ where S is the source function $$S = \frac{j}{\alpha}$$ and $$\tau$$ is the optical depth.
q.png
 
Last edited:
Physics news on Phys.org
The only solution (for part a) I can think of is if we use the radiative transfer equation without S... i.e. $$\frac{I}{\tau}= I_0 e^{-\tau}$$ and then take the natural log of each side to get $$\tau= -\ln(\frac{I}{I_0})$$ but I don't know if I can just get rid of S like that?
 
Last edited:
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top