I Orbits -- radial verses perpendicular orbits & energy

AI Thread Summary
Calculating the extra energy required for a spaceship to thrust perpendicular to the orbital plane involves understanding the momentum gained from launching along the plane. Gravity acts symmetrically, meaning that while it may be easier to travel along the orbital plane due to initial momentum, a spacecraft can maintain an oblique orbit without additional fuel once in space. Objects like comets can indeed remain in non-coplanar orbits, although gravitational influences from planets can gradually alter their paths over time. The planets themselves have slightly tilted orbits relative to the Sun's equatorial plane, with variations in inclination. Overall, thrusting at angles to the orbital plane is feasible, but the energy calculations depend on the specific trajectory and gravitational interactions involved.
Albertgauss
Gold Member
Messages
294
Reaction score
37
Does anyone know where I can find information about how to calculate how much extra energy is required of a spaceship to try to thrust perpendicular (or at some angle) to the orbital plane verses flying completely/only in the orbital plane when moving outwards in our solar system? If the spaceship does thrust perpendicular to the orbital solar system plane, will the sun's gravity try to bring the ship back into the orbital plane?
 
Astronomy news on Phys.org
Albertgauss said:
Does anyone know where I can find information about how to calculate how much extra energy is required of a spaceship to try to thrust perpendicular (or at some angle) to the orbital plane verses flying completely/only in the orbital plane when moving outwards in our solar system? If the spaceship does thrust perpendicular to the orbital solar system plane, will the sun's gravity try to bring the ship back into the orbital plane?
No, gravity is symmetrical in all directions. The only reason that it would be easier to travel along the orbital plane is because your launch point is also traveling along that plane so you already have some momentum. It's the same reason that all launches happen as close to the equator as possible and always go in the same direction that the Earth is rotating.

Once in orbit, you should not require any fuel no matter how you are oriented in regards to the solar system.

The planets are all in a plane because they formed from a spinning blob of dust that formed the sun 4.6 billion years ago. The self-interaction of that gas cloud and spinning motion of it formed it into a disk. Much further out, objects orbit in all lots of different obits. The Oort cloud is theoretically spherical.
 
Oh, I see. Just a check on my logic: Thus, if there was a satellite or comet orbiting at an oblique angle with respect to the orbital plane for some reason and no space gas, the satellite or comet should then stay in that orbit. Is this correct?
 
Albertgauss said:
Oh, I see. Just a check on my logic: Thus, if there was a satellite or comet orbiting at an oblique angle with respect to the orbital plane for some reason and no space gas, the satellite or comet should then stay in that orbit. Is this correct?
For all practical purposes: yes. Once in orbit, it will stay there. There are some known comets that have orbits like that.

If it's in the solar system, the gravity of Jupiter (and the rest of the planets to a less degree) will pull anything towards the plane of the planets, but it'd have to be out there for millions of years to be noticeable.
 
Albertgauss said:
Does anyone know where I can find information about how to calculate how much extra energy is required of a spaceship to try to thrust perpendicular (or at some angle) to the orbital plane verses flying completely/only in the orbital plane when moving outwards in our solar system? If the spaceship does thrust perpendicular to the orbital solar system plane, will the sun's gravity try to bring the ship back into the orbital plane?
If by "orbital plane" you mean the Sun's equatorial plane, Then you should be made aware of the fact that none of the planets actually orbit exactly in that plane. Mercury orbits closest to this plane. The ecliptic, or the Earth's orbital plane, is tilted by some 7.25 degree to the Sun's equatorial plane. Relative to the ecliptic the other planets have inclinations that vary from 0.77 to 3.39 degrees (Pluto's orbit is at 17.15 degrees to the ecliptic.) The main body of the asteroid belt includes objects with as much as 30 degree inclinations.
 
Okay, I got it. Thanks for your help everyone. I'm good to go now.
 
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Today at about 4:30 am I saw the conjunction of Venus and Jupiter, where they were about the width of the full moon, or one half degree apart. Did anyone else see it? Edit: The moon is 2,200 miles in diameter and at a distance of 240,000 miles. Thereby it subtends an angle in radians of 2,200/240,000=.01 (approximately). With pi radians being 180 degrees, one radian is 57.3 degrees, so that .01 radians is about .50 degrees (angle subtended by the moon). (.57 to be more exact, but with...
Back
Top