http://ocw.mit.edu/18-03S06
Differential Equations
As taught in: Spring 2010
http://ocw.mit.edu/courses/mathemat...ations-spring-2010/download-course-materials/
Differential Equations (2006)
http://dspace.mit.edu/bitstream/handle/1721.1/70961/18-03-spring-2006/contents/index.htm?sequence=4
Professor Arthur Mattuck
Lec 1 | MIT 18.03 Differential Equations, Spring 2006
The Geometrical View of y'=f(x,y): Direction Fields, Integral Curves.
Lec 2 | MIT 18.03 Differential Equations, Spring 2006
Euler's Numerical Method for y'=f(x,y) and its Generalizations
Lec 3 | MIT 18.03 Differential Equations, Spring 2006
Solving First-order Linear ODE's; Steady-state and Transient Solutions
Lec 4 | MIT 18.03 Differential Equations, Spring 2006
First-order Substitution Methods: Bernouilli and Homogeneous ODE's
Lec 5 | MIT 18.03 Differential Equations, Spring 2006
First-order Autonomous ODE's: Qualitative Methods, Applications
Lec 6 | MIT 18.03 Differential Equations, Spring 2006
Complex Numbers and Complex Exponentials
Lec 7 | MIT 18.03 Differential Equations, Spring 2006
First-order Linear with Constant Coefficients: Behavior of Solutions, Use of Complex Methods.
Lec 8 | MIT 18.03 Differential Equations, Spring 2006
Continuation; Applications to Temperature, Mixing, RC-circuit, Decay, and Growth Models.
Lec 9 | MIT 18.03 Differential Equations, Spring 2006
Solving Second-order Linear ODE's with Constant Coefficients: The Three Cases
Lec 10 | MIT 18.03 Differential Equations, Spring 2006
Continuation: Complex Characteristic Roots; Undamped and Damped Oscillations.
Lec 11 | MIT 18.03 Differential Equations, Spring 2006
Theory of General Second-order Linear Homogeneous ODE's: Superposition, Uniqueness, Wronskians.
Lec 12 | MIT 18.03 Differential Equations, Spring 2006
Continuation: General Theory for Inhomogeneous ODE's. Stability Criteria for the Constant-coefficient ODE's.
Lec 13 | MIT 18.03 Differential Equations, Spring 2006
Finding Particular Solution to Inhomogeneous ODE's: Operator and Solution Formulas Involving Exponentials.
Lec 14 | MIT 18.03 Differential Equations, Spring 2006
Interpretation of the Exceptional Case: Resonance
Lec 15 | MIT 18.03 Differential Equations, Spring 2006
Introduction to Fourier Series; Basic Formulas for Period 2(pi).
Lec 16 | MIT 18.03 Differential Equations, Spring 2006
Continuation: More General Periods; Even and Odd Functions; Periodic Extension.
Lec 17 | MIT 18.03 Differential Equations, Spring 2006
Finding Particular Solutions via Fourier Series; Resonant Terms; Hearing Musical Sounds.
Lec 19 | MIT 18.03 Differential Equations, Spring 2006
Introduction to the Laplace Transform; Basic Formulas.
Lec 20 | MIT 18.03 Differential Equations, Spring 2006
Derivative Formulas; Using the Laplace Transform to Solve Linear ODE's
Lec 21 | MIT 18.03 Differential Equations, Spring 2006
Convolution Formula: Proof, Connection with Laplace Transform, Application to Physical Problems.
Lec 22 | MIT 18.03 Differential Equations, Spring 2006
Using Laplace Transform to Solve ODE's with Discontinuous Inputs
Lec 23 | MIT 18.03 Differential Equations, Spring 2006
Use with Impulse Inputs; Dirac Delta Function, Weight and Transfer Functions.
Lec 24 | MIT 18.03 Differential Equations, Spring 2006
Introduction to First-order Systems of ODE's; Solution by Elimination, Geometric Interpretation of a System.
Lec 25 | MIT 18.03 Differential Equations, Spring 2006
Homogeneous Linear Systems with Constant Coefficients: Solution via Matrix Eigenvalues (Real and Distinct Case).
Lec 26 | MIT 18.03 Differential Equations, Spring 2006
Continuation: Repeated Real Eigenvalues, Complex Eigenvalues.
Lec 27 | MIT 18.03 Differential Equations, Spring 2006
Sketching Solutions of 2x2 Homogeneous Linear System with Constant Coefficients (some review of linear algebra, characteristic equation and eigenvalues, and discussion of stability)
http://www.math.harvard.edu/archive/21b_fall_04/exhibits/2dmatrices/index.html
Lec 28 | MIT 18.03 Differential Equations, Spring 2006
Matrix Methods for Inhomogeneous Systems: Theory, Fundamental Matrix, Variation of Parameters.
Lec 29 | MIT 18.03 Differential Equations, Spring 2006
Matrix Exponentials; Application to Solving Systems
Lec 30 | MIT 18.03 Differential Equations, Spring 2006
Decoupling Linear Systems with Constant Coefficients
Lec 31 | MIT 18.03 Differential Equations, Spring 2006
Non-linear Autonomous Systems: Finding the Critical Points and Sketching Trajectories; the Non-linear Pendulum.
Lec 32 | MIT 18.03 Differential Equations, Spring 2006
Limit Cycles: Existence and Non-existence Criteria.
Lec 33 | MIT 18.03 Differential Equations, Spring 2006
Relation Between Non-linear Systems and First-order ODE's; Structural Stability of a System, Borderline Sketching Cases; Illustrations Using Volterra's Equation and Principle.