Orientability of Null Submanifold w/ Boundary - Stokes' Theorem

ifidamas
Messages
3
Reaction score
0
I have this question: Is it possible to define an orientation for a null submanifold with boundary?
In that case, is possible to use Stokes' theorem?
In particular, there is a way to define a volume form on that submanifold?
 
Physics news on Phys.org
Orientability is topological. Volume forms only depend on affine structure. None of these notions are metrical, so it doesn't matter if the metric is degenerate on your submanifold. Stokes' theorem still holds. There is a good discussion of this sort of thing at the end of ch. 2 of the free online version of Carroll, http://arxiv.org/abs/gr-qc/?9712019 .

The only thing to worry about is that if there's curvature and the integrand is nonscalar (e.g., the flux of stress-energy), then this sort of thing fails, because we can't even define unambiguously what it means to add vectors that lie in different tangent spaces.
 
Last edited:
So I can't integrate a 2-form over a 2-submanifold which is a boundary of a nulla 3-submanifold?
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Back
Top