Orthogonal eigenvectors and Green functions

paolorossi
Messages
24
Reaction score
0
Hi you all. I have to diagonalize a hermitian operator (hamiltonian), that has both discrete and continuous spectrum. If ψ is an eigenvector with eigenvalue in the continuous spectrum, and χ is an eigenvector with eigenvalue in the discrete spectrum, is correct to say that ψ and χ are always mutually orthogonal? I think the answer is yes. But if I numerically calculate the inner product between ψ and χ, then I find that this is far from zero.

PS
I work in this way.
I calculate the eigenvalues and eigenvectors from the Green operator.
Specifically, I have the hamiltonian operator

H = H0 + V

H0 has only continuous spectrum. Using a perturbative expansion, I find the Green operator

G(z) = 1/(z-H)

in terms of V and of the Green operator of H0

G0(z) = 1/(z-H0)

So I find that G(z) has a branch cut and one simple pole. This is consistent with various works and books. Then I calculate the eigenvalues and the corrispondent eigenvectors. So I express ψ and χ in terms of a common basis, and using the Fourier coefficients I can calculate the inner product.
 
Physics news on Phys.org
ok I solve it. I have calculated analytically the inner product and I see that it is zero. In fact, I had made ​​a mistake in the numerical calculation.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top