Oscillator with an inductance with nonzero resistance

AI Thread Summary
To measure changes in inductance of a wire loop with a resistance of 30-200 ohms, modifications to the existing oscillator circuit are necessary, as it currently only functions with low-resistance inductors. The inductance range of interest is approximately 100-300 microhenries. A suggested approach involves driving a signal from a known source impedance and measuring the in-phase and quadrature components of the AC voltage waveform to determine both real resistance and reactive inductive impedance. However, implementing this measurement with a standard microcontroller, like a PIC, may pose challenges, prompting the need for additional supporting circuitry. The discussion highlights the need for practical solutions to effectively detect inductance changes in resistive scenarios.
meereck
Messages
13
Reaction score
0
Hello,
I need to measure ONLY a change in inductance of a loop (long wire) which has got resistance about 30-200 ohms.
I have tried to build the oscillator according to this schematic : http://ironbark.bendigo.latrobe.edu.au/~rice/lc/
but the problem is it works well with an inductance with almost zero resistance only.
If I connect my loop, it behave wrongly. I guess because of the energy disappation?

Therefore, I need to modify that circuit, or use another another one. Unfortunately, I haven't found anything about how to make an oscillator with an resistive inductor.

I read about using a negative resistance circuit but I have no clue how to employ that.
I have also heard about using a transformer (perhaps it is called tapped inductors?).

To summarize my approach:
I only need to detect a change in inductance of a wire loop.
I prefer to have an oscillator with TTL output and to measure therefore the frequency (in a microcontroller)

May I ask you for some hints on that?
Thanks in advance,
Best regards Meereck
 
Last edited by a moderator:
Engineering news on Phys.org
What is the range of inductance that you are trying to measure, in addition to the 30-200 Ohms of real resistance?

I would probably approach it by driving a signal from a known source impedance, and measuring the in-phase and quadrature components of the divided AC voltage waveform. That will give you values for both the real resistance and the reactive inductive impedance.
 
berkeman said:
What is the range of inductance that you are trying to measure, in addition to the 30-200 Ohms of real resistance?

I would probably approach it by driving a signal from a known source impedance, and measuring the in-phase and quadrature components of the divided AC voltage waveform. That will give you values for both the real resistance and the reactive inductive impedance.

thanks for a reply.
The inductance will be about 100-300 microH, its pure resistance will be 30-200Ohm.
>>measuring the in-phase and quadrature components of the divided AC voltage waveform.
Right, but this will probably be quite difficult to measure by a common microcontroller such as a PIC. Would you have any supporting circuit for that?

cheers M.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top