Outward Flux Problem: Showing k4\pi & 0 for Domain D in R3

  • Thread starter Thread starter Treadstone 71
  • Start date Start date
  • Tags Tags
    Flux
Treadstone 71
Messages
275
Reaction score
0
Let D be a "nice" bounded domain in R3 with boundary surface S and let F =-k del(1/r). Show that the outward flux over S is k4\pi if the origin lies in D and 0 if the origin lies outside D U S.

I don't understand the notation for F. What is del of 1/r?
 
Physics news on Phys.org
Can anyone help?
 
Del is just a notation for the gradient operator. The vector field is - k \vec{\nabla}\left(\frac{1}{r}\right) = k \frac{1}{r^2}\hat{r}.

As for your problem, use Gauss' Theorem to calculate the integral. Be very careful when your surface encloses the origin.
 
By \hat{r}, you mean the unit vector in the direction of (x,y,z)?
 
Yes, \hat{r} = \frac{\vec{r}}{r}.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top