I Page 183-184 of Howard George's group book

LCSphysicist
Messages
644
Reaction score
162
TL;DR Summary
..
I would appreciate if someone could help me to understand what is happening in section 12.3 from the Howard George's book.

First of all, the propose of the section is to show how $SU(3)$ decomposes into $SU(2) \times U(1)$. But i can't understand what is happening. First of all, i can't get the notation here: (where the dot is supposed to mean the trivial representation and the number notation at right of the boxes means $(2I+1)_Y$)

1701379385690.png


I can see that the two box in the same row represents a $6$ represetation of the $SU(3)$. But then, what just happens bellow? He goes on, and show another example

1701379473872.png


I am not sure what exactly these figures means. So the question can be summarized in two individual questions:1) What does the notations means? How do i get this decomposition? That is, what are the rules (I can understand Young tableaux rule, is something like that?) Why the first case above, for example, have $I=0,Y=2/3$?

2) How exactly this show to me that $SU(3)$ decomposes in $SU(2) \times U(1)$?... Just another example:

1701379673076.png
 
Physics news on Phys.org
The name is Georgi, and it is easier for everyone if you also give the title of the book. The notations are explained in the beginning of the chapter. But your question is very broad. You want one post explanation of one chapter material.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...

Similar threads

Back
Top