Gregg
- 452
- 0
If a mass takes a path down a slope of a parabola. The force downward is its weight. I need to resolve the perpendicular and parallel (to direction of motion) forces.
y=ax^2+bx+c, it has a y intercept of h and a repeated root l. a>0. The mass slides from x=0 to x=l with no friction.
d\vec{r} = \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right)\text{dx}
A unit vector in this direction:
\hat{u} = \frac{1}{\sqrt{1+(2ax+b)^2}}\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right)
To get the size of the component of the force parallel to the curve:
mg \cos (\theta) = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}}
mg \cos (\theta) \hat{u} = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}} \frac{1}{\sqrt{1+(2ax+b)^2}}\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right) = mg \frac{(2ax+b)}{1+(2ax+b)^2}\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right)
I don't think this is right
y=ax^2+bx+c, it has a y intercept of h and a repeated root l. a>0. The mass slides from x=0 to x=l with no friction.
d\vec{r} = \left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right)\text{dx}
A unit vector in this direction:
\hat{u} = \frac{1}{\sqrt{1+(2ax+b)^2}}\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right)
To get the size of the component of the force parallel to the curve:
mg \cos (\theta) = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}}
mg \cos (\theta) \hat{u} = mg\frac{(2ax+b)}{\sqrt{1+(2ax+b)^2}} \frac{1}{\sqrt{1+(2ax+b)^2}}\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right) = mg \frac{(2ax+b)}{1+(2ax+b)^2}\left(<br /> \begin{array}{c}<br /> 1 \\<br /> 2ax+b<br /> \end{array}<br /> \right)
I don't think this is right