Parallel Vectors - Learn How to Calculate

  • Thread starter Thread starter BOAS
  • Start date Start date
  • Tags Tags
    Parallel Vectors
BOAS
Messages
546
Reaction score
19
Sorry - Answered my own question.
 
Last edited:
Physics news on Phys.org
To find a vector which is perpendicular to 2 others, just find the cross product between the two.

Let A(1,-1,2) and B(2,1,-3).

A x B will be perpendicular to both vectors A and B.
(I hope you know to find cross product)

To find unit vector just divide the resultant with the norm.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top