Parametrizing a Circle: Solving |z-z_o| = r for z(t)

  • Thread starter Thread starter squaremeplz
  • Start date Start date
  • Tags Tags
    Circle
squaremeplz
Messages
114
Reaction score
0

Homework Statement



trying to parametrize |z - 2 + i | = 3

Homework Equations



|z - z_o| = r

The Attempt at a Solution



z(t) = 2 + i + 3e^(it)

im not sure if 2 + i is correct, or 2 - i.
 
Physics news on Phys.org
z - 2 + i = z - (2 - i), so the center is at 2 - i.
With that change, I think you have what you need.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top