Parity and total angular momentum

gdonoso94
Messages
2
Reaction score
0
Hi,

I'd like to know how to calculate parity and total angular momentum of nuclei which have even Z and even N and also Z and N are magic numbers, such as 8O8 or 20Ca20 (the number before the element is Z and the after one is N).

I don't know how to insert LaTeX formulas.

Thank you in andvance
 
Physics news on Phys.org
For even/even nuclei, all pairs cancel each other, so you always have 0+ in the ground state.
 
  • Like
Likes gdonoso94
Thanks for your reply. I knew that, but I don't understand why orbital angular momentum is 0, because you have nucleons, for example in p-shell... I don't know if I have explained me...
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top