The question is for which of the ##1P## meson states - ##1^{1}P_{1}, 1^{3}P_{0},1^{3}P_{1}, 1^{3}P_{2} ## ##D_{s}## states decaying to a ##1S## state is the decay: ##D_{s}**^{+} -> D_{s}^{+}\pi^{0} ## possible?(adsbygoogle = window.adsbygoogle || []).push({});

Solution

So the strong interaction conserves parity. Parity of meson is given by ## (-1)^{l+1} ##, for the ##1s## states, ##l=0## and so ##p=1##.

The solution than states as both the decay products have zero spin the total angular momentum of the decaying particle must be equal to the orbitial angular momentum of ##D_{s}^{+}\pi^{0}## system.

So I agree with this last comment, but I have no idea why both decay products have ##0## spin????

I know that a meson is a quark and its antiquark, and so the spin adds to either ##1## or ##0##. But how do we know which it is?

The solution then uses parity of the ##D_{s}^{+}\pi^{0}## system is ##P = (−1)^{l} × −1 × −1 ## *2.

Im confused where this comes from -so I know that the parity of a meson in it's lowest states - i.e- ##l=0## is ##-1##. And I know that for a system of particles ##P=(-1)^{l}##, but, I've never seen how to consider the parity of two particles decayed. Is this how you 'add' the parities ?

And so how exactly should you think of the system of decay products. So a particle has an intrinsic parity. Is this a particle or a quark? I.e is ##P=(-1)^{l}## coming from thinking of a system of quarks or a system of the two particles ##D_{s}^{+}\pi^{0}##?

(From which the solution follows from the fact that we require ##P=1##,again I'm okay with this once I understand expression *2.)

Thanks, your help is really appreciated !!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Possible decay states strong interaction, parity conservation

**Physics Forums | Science Articles, Homework Help, Discussion**