Parseval's Theorem Homework: Fourier Sine Series

AppleFritters
Messages
3
Reaction score
0

Homework Statement


I'm given the following function
f(x) = \begin{cases} x &-2<x<2\\ f(x+4) &\mbox{otherwise} \end{cases}

And I'm asked to find the Fourier sine series. Then I'm supposed to use Parseval's theorem to obtain a certain sum.

Homework Equations


Since I have a sine Fourier series, Parseval's Theorem for this says
\frac{1}{b-a} \int_a^b |f(x)|^2 dx = \sum_{n=1}^\infty b_n^2


The Attempt at a Solution


So I worked through and got the Fourier sine series for this function which is
f(x) = \frac{4}{\pi} \left[ \sin \left( \frac{\pi x}{2} \right) - \frac{1}{2} \sin \left( \frac{2 \pi x}{2} \right) + \frac{1}{3} \sin \left( \frac{3 \pi x}{2} \right) - \frac{1}{4} \sin \left( \frac{4 \pi x}{2} \right) + \ldots \right]

Now I apply Parseval's Theorem:
\frac{1}{b-a} \int_a^b |f(x)|^2 dx = \sum_{n=1}^\infty b_n^2 \\ <br /> \frac{1}{2-(-2)} \int_{-2}^2 x^2 dx = \sum_{n=1}^\infty b_n^2 \\<br />

On the left hand side:
\frac{1}{4} \int _{-2}^{2} x^2 dx = \frac{16}{12}

On the right hand side:
\left(\frac{4}{\pi} \right)^2 \sum_{n=1}^\infty \frac{1}{n^2} = \frac{16}{\pi ^2} \sum_{n=1}^\infty \frac{1}{n^2}

Now equating the left and right hand sides:
\frac{16}{12} = \frac{16}{\pi ^2} \sum_{n=1}^\infty \frac{1}{n^2}\\
\frac{\pi ^2}{12} \sum_{n=1}^\infty \frac{1}{n^2}

The answer I'm supposed to be getting is
\frac{\pi ^2}{6} \sum_{n=1}^\infty \frac{1}{n^2}

So I'm off by a factor of a half somewhere but I can't figure it out. Some help would be appreciated. Thank you.
 
Physics news on Phys.org
I don't think you have stated Parseval's theorem correctly for the sine series.

Parseval's theorem for the complex Fourier series is as follows:
$$\sum_{n=-\infty}^{\infty}c_n e^{2\pi i n x / P}$$
in which case
$$\sum_{n=-\infty}^{\infty}|c_n|^2 = \frac{1}{b-a}\int_{a}^{b} |f(x)|^2 dx$$
If you have a real Fourier series:
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2\pi n x / P) + \sum_{n=1}^{\infty} b_n \sin(2\pi n x / P)$$
then how does ##c_n## relate to ##a_n## and ##b_n##?
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top