Partial derivatives - verify solution?

jjou
Messages
63
Reaction score
0
[SOLVED] partial derivatives - verify solution?

Let f:\mathbb{R}^3\rightarrow\mathbb{R}, g:\mathbb{R}^2\rightarrow\mathbb{R}, and F:\mathbb{R}^2\rightarrow\mathbb{R} be given by
F(x,y)=f(x,y,g(x,y)).
1. Find DF in terms of the partial derivatives of f and g.
2. If F(x,y)=0 for all (x,y), find D_1g and D_2g in terms of the partial derivatives of f.

My solution:
1. DF=D_1F+D_2F=(f_1+f_3g_1)+(f_2+f_3g_2)
2. If f_3\neq0, then we have the partials of F being zero, so:
g_1=-f_1/f_3 and g_2=-f_2/f_3. However, if f_3=0 then we have f_1=f_2=0.

My concern is with the last part of 2. If f_3=0, then I cannot make any statement about the partials of g. Am I doing something wrong?


NOTE: f_1 refers to differentiation of f by the first variable.
 
Physics news on Phys.org
No, that's completely true. If F is, in fact, NOT a function of g, then no information about F can tell you anything about g!
 
Thanks! :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top