MHB Partial Fraction Decomposition Help - Calculus BC

Click For Summary
The discussion focuses on solving the integral of the function (4x^2+x-2)/(x^3+2x^2-3x) using partial fraction decomposition. The denominator is factored as x(x-1)(x+3), leading to the assumption of a decomposition form with constants A, B, and C. The Heaviside cover-up method is employed to find the values of A, B, and C, resulting in A = 31/12, B = 2/3, and C = 3/4. The final decomposition is expressed as (31/12)/(x+3) + (2/3)/x + (3/4)/(x-1), allowing for straightforward integration. The integral evaluates to a logarithmic expression involving the decomposed terms.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Help with Calculus BC: partial fractions!?

Thank you for your help guys. I wrote the problem wrong in the previous question :(

integral (4x^2+x-2)/(x^3+2x^2-3x) dx

howwwww?

Here is a link to the question:

Help with Calculus BC: partial fractions!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello living higher:

We are given to decompose:

$\displaystyle \frac{4x^2+x-2}{x^3+2x^2-3x}$

The first step is to factorize the denominator:

$x^3+2x^2-3x=x(x^2+2x-3)=x(x-1)(x+3)$

Now we assume the decomposition will take the form:

$\displaystyle \frac{4x^2+x-2}{x(x-1)(x+3)}=\frac{A}{x+3}+\frac{B}{x}+\frac{C}{x-1}$

Now, rather than set up a linear system of equations, I am going to use a shortcut method called the Heaviside cover-up method. Look at the first term on the right. The root of the denominator is $x=-3$.

To find the value of $A$, we "cover-up" the factor $x+3$ to get:

$\displaystyle \frac{4x^2+x-2}{x(x-1)}$

and we evaluate this at $x=-3$ to find:

$\displaystyle A=\frac{4(-3)^2+(-3)-2}{(-3)((-3)-1)}=\frac{31}{12}$

Next we look at the second term in the decomposition and we see the root of the denominator is $x=0$, and covering up the factor $x$ on the left, and evaluating it for $x=0$, we find:

$\displaystyle B=\frac{4(0)^2+(0)-2}{((0)-1)((0)+3)}=\frac{2}{3}$

And finally, we look at the third term in the decomposition and we see the root of the denominator is $x=1$, and covering the the factor $x-1$ on the left and evaluation it for $x=1$, we find:

$\displaystyle C=\frac{4(1)^2+(1)-2}{(1)((1)+3)}=\frac{3}{4}$

And now we may state:

$\displaystyle \frac{4x^2+x-2}{x^3+2x^2-3x}=\frac{31}{12(x+3)}+\frac{2}{3x}+\frac{3}{4(x-1)}$

Now we may directly integrate:

$\displaystyle \int\frac{31}{12(x+3)}+\frac{2}{3x}+\frac{3}{4(x-1)}\,dx=\frac{31}{12}\ln|x+3|+\frac{2}{3}\ln|x|+ \frac{3}{4}\ln|x-1|+C$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
1K
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K