Partial Fractions: Decomposing a Rational Function

PFuser1232
Messages
479
Reaction score
20
Suppose we have a rational function ##P## defined by:
$$P(x) = \frac{f(x)}{(x-a)(x-b)}$$
This is defined for all ##x##, except ##x = a## and ##x = b##.
To decompose this function into partial fractions we do the following:
$$\frac{f(x)}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}$$
Multiplying both sides by ##(x-a)(x-b)##:
$$f(x) = A(x-b) + B(x-a)$$
Which again holds whenever ##x## does not equal ##a## or ##b##.
To find ##A## or ##B##, we set ##x## equal to ##a## or ##b##, which is confusing. Didn't we state earlier that the rational function, and all steps that took us from the first equation to the last equation, are only valid when ##x## does not equal ##a## or ##b##?
 
Mathematics news on Phys.org
MohammedRady97 said:
Suppose we have a rational function ##P## defined by:
$$P(x) = \frac{f(x)}{(x-a)(x-b)}$$
This is defined for all ##x##, except ##x = a## and ##x = b##.
To decompose this function into partial fractions we do the following:
$$\frac{f(x)}{(x-a)(x-b)} = \frac{A}{x-a} + \frac{B}{x-b}$$
In general, no. If f(x) happens to be a constant or a linear polynomial, the above is valid, but if f(x) is a higher degree polynomial or other function, it doesn't work. For example, it doesn't work if P(x) is ##\frac{x^3}{(x - a)(x - b)}##.
MohammedRady97 said:
Multiplying both sides by ##(x-a)(x-b)##:
$$f(x) = A(x-b) + B(x-a)$$
Which again holds whenever ##x## does not equal ##a## or ##b##.
To find ##A## or ##B##, we set ##x## equal to ##a## or ##b##, which is confusing. Didn't we state earlier that the rational function, and all steps that took us from the first equation to the last equation, are only valid when ##x## does not equal ##a## or ##b##?
The equation f(x) = A(x - b) + B(x - a) is valid for all values of x, including a and b, so there is no problem setting x to either of these values.

Consider the equation ##\frac{x^2 - 4}{x - 2} = x + 2##. The left side is not defined if x = 2. If we multiply both sides by x - 2, we get x2 - 4 = (x + 2)(x - 2). Here, both sides are defined for all values of x. Since we're no longer dividing by an expression that could be zero, there are no longer any restrictions on x.
 
Last edited:
In your example, when both sides of the equation are multiplied by ##x-2##, isn't the fact that ##x ≠ 2## implied?
The value of ##\frac{x-2}{x-2}## is indeterminate if ##x = 2##.
 
MohammedRady97 said:
In your example, when both sides of the equation are multiplied by ##x-2##, isn't the fact that ##x ≠ 2## implied?
Yes. However, in the new equation, there are no restrictions on x.
The two expressions...
##\frac{x^2-4}{x-2} ## and x + 2
have identical values except when x = 2.
The expression on the left is undefined when x = 2, but the expression on the right is defined, and has a value of 4.

When you multiply both sides of the equation ## \frac{f(x)}{(x - a)(x - b)} = \frac A {x - a} + \frac B {x - b}##, you get a new equation that does not involve division, and so is defined for all x, including x = a and x = b. So there is no problem in substituting either of these values to find your constants A and B.
MohammedRady97 said:
The value of ##\frac{x-2}{x-2}## is indeterminate if ##x = 2##.
Yes, of course.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top